
Manual: GeZA for Android

GeZA is an Android App to examine and browse 1 dimensional cellular automata. View the
attractive images. GeZa is for free and without advertising. You’ll get it from the Google Play
Store.

Table of contents:

User Interface..2
General..2
Rule editor...4
Set colours...5
save file...6
read file...7

Fundamentals..8
Totalistic..8
Wolfram..9
NaSch-model...10
TwoSteps...10
Zhabotinsky...11
block cell automaton...12

Options..13
Totalistic..13
Wolfram..14
NaSch-Model..15
TwoSteps...16
Zhabotinsky...17
Block CA...18

Credits...19
Links..20

User Interface

General

After starting GeZA a cellular automaton is be displayed. With wiping gestures (look table
below) you can initiate additional functions.

wipe gesture function

Short touch start/stop animation

bottom up Compute and show the next generations

top down
show the first generations, if it's already the
first, then the initial start (only 1 cell of state
1) is used

right to left
slowly

shows a new random, symmetric initial
generation

right to left
fast

shift display to the left (half display size)

left to right
slowly

shows a new random, non symmetric initial
generation

left to right
fast

shift display to the right (half display size)

In addition to the wipe gestures there are more functions choosable in the drop down menu
and icons in the title bar.

Depending of the physical display size, there are not displayed all icons in the title bar, then
these functions are choosable via the drop down menu

Rule editor

Touching on the rule string in the option dialog, this rule editor will be opened.

You see the rule string on the top. Touching on this string sets the cursor. The number in red
among them shows the current cursor/string position. This is useful, cause the character at this
position dictates the value of the cell in the next generation, if the sum of the neighbour cells
values is equal to the position number.
Touch the button "use it" and provides the new rule to the option dialog and goes back.

controling:

button function

<---
cursor just 1 position to the
left.

--->
cursor just 1 position to the
right.

Hilfe opens this help side.

< del
deletes 1 character left from
the cursor.

del >
deletes 1 character right from
the cursor.

function of the rule characters:

character function

= the cell keeps the state

+ increments state of the cell by 1, 9 goes to
0.

- decrements state of the cell by 1, 0 stays 0.

! 0 goes to 1, otherwise the cell goes to 0.

? the cell gets a random state (0..9).

> the cell gets the highest state from the
neighbours.

< the cell gets the lowest state from the
neighbours.

There is a problem with rules longer than display width. I'm working on it.

Set colours

This shows the current selected colours for the different states (0-9) of the cells.
You see 10, 2 or 7 cells depending of the context (totalistic, Wolfram, NaSch).

Clicking on such coloured cell will open a colour picking, which assign the new colour to the
selected cell state.
To activate the new colours, click button "use this". The program will than show the main
view screen with new colours.
For returning to the default colour scheme, click the button "default".

save file

In this item you may write your current CA into a file (GeZA type and/or picture(PNG))

On top is the directory shown, which is the destination of file operation here. Changing the
directory isn't possible yet.
You may save two types of files:
1) a graphic of the current screen by type of PNG.
2) the current CA with all parameters and settings into a file with extension "gza". This file is
readable by the GeZA app only, but of cause by other android devices also.

Activated checkboxes says which types of files will be written.
The filnames are the combination of "geza_", Timestamp and suffix.

read file

In this you open files, wich are writen by GeZA before.

The app searches in a predefined directory for "GeZA files". This directory ("GeZA" on the
internal memory) is not changeable yet. The complete name of this directory is shown in the first
line.
Below you see the list of the files found (snapshot plus name). Clicking on one of this entries will
show you the related informations under "selected files" again. Clicking the button "load file" the
related automat will be startet.
Double clicking on an entry will start the automat immediately.

Fundamentals

Totalistic

A cellular Automaton (CA) is an amount of cells, each have a defined, almost discrete state (initial
state). A rule, which considers the cell state and the state of defined neighbour cells, determines
the cell state of the next generation. The cells may arranged in a line (1-dimensional), in a plain
(2-dimensional) or higher dimensions.
One of the most famous CA is the Game of Life by John Conway from the 1970ies. It's 2-
dimensional.

But with GeZA you can explore CA only in one dimension, just one line. The second
dimension will show here the temporal lapse. This means that the ongoing generations are
arranged from the top to the bottom. For example here the rule 0100, resp. 01 (missing digits
interprets GeZA as 0).

Initial state (= 0. generation) is one cell with state 1 (green), all other 0 (white).

Rule 01 (3 Neighbours) means the following instruction for computing the next generation:
In this case a cell may have only the state 0 (white) or 1 (green)

sum from the 3 neighbor cells
(left, middle, right)

0 1 2 3

state of the (middle) cell in the
next generation

0 1 0 0

This rule is left/right symmetric. The CAs which rules depends only on the sum of the
neighbours are called "totalistic".

The digit in the nth pos give the state for the new generation, if the sum of the neighbour states
is n-1. For example: sum is 3, the state in the next generation is given by the 4th position of the
rule. Doesn't exist this position, it will become 0. This notation is different from Wolfram.

7 additional Characters geting the following special functions:

character function

= the cell keeps the state.

+ state of the cell is incremented by 1, 9
goes to 0.

- state of the cell is decremented by 1, 0
stays 0

! 0 goes to 1, otherwise the state is 0.

? the cell gets a random state (0..9)

> the cell gets the highest state from
neighbours.

< the cell gets the lowest state from
neighbours.

Wolfram

In this simple Wolfram cellular automaton, the cells gets values of 0 or 1.
For transformation to the next generation is interesting the state from the left neighbour, the
cell itself and the right neighbour. That gives 2^3 = 8 possible states of neighbourhood. Every
one of this 8 states you can dedicate the state 0 or 1. This will be the state for the regarded cell
in the next generation. The 8 digits of 0 or 1 represents a binary number. This gives gives a
distinct transformation rule.

neighbours 111 110 101 100 011 010 001 000

state of new
gen.

0 0 0 1 1 1 1 0

This example is the rule 00011110 binary resp. decimal 30. Because of the importance of this
rule, GeZA starts with this one in the Wolfram mode.
Another important rule is 110 (decimal). It is proven that rule 110 is an universal Turing
machine
With this App you can explore the rules from 0 up to 255.

More information you'll find in the related Wikipedia entry.

NaSch-model

"NaSch" means the Nagel-Schreckenberg-model. It's a traffic simulation published by the 2
physicists Kai Nagel and Michael Schreckenberg in 1992.
It gaves the first explanation for "traffic jam out of nowhere".

The cells represents in the NaSch-model a street of equal sections. This cells are empty or
contains a car with a defined, discrete speed. The speeds are one of six different values (from
0 upto 135 in steps of 27 km/h). The initial state is given by random. You can define the
density of cars under menu item "options"(15% is standard).
A car accelerates, if it has enough empty cells in front and maximum speed isn't reached. A
car slowed, if it has less cells in front. Additional there is an unmotivated slowing by a part of
the cars. The amount of unmotivating slowing cars is defined by the "dawdle factor", which
you find in options too.

state representing

0 cell of street without
car

1 car speed 0 km/h

2 car speed 27 km/h

3 car speed 54 km/h

4 car speed 81 km/h

5 car speed 108 km/h

6 car speed 135 km/h

Driving direction is left to right, the timing sequence is top-down. You can see: traffic jam
moving to the left, though the cars moving to the right.

More information you'll find in the related Wikipedia entry.

TwoSteps

This type of cellular automata is similar to the "totalistic", but "TwoSteps" use different
rules/neighborhoods alternatingly.
This means: One rule for odd generation and the other rule for even generation.
(In case of equality of rules and neighborhood this automaton is identical to the "totalistic".)

Zhabotinsky
The name of this CA is based on the Belousov-Zhabotinsky-reaction, a well known chemical
oszillator.

To simulate this chemical reaction i used the "Misch-Masch-Maschine" by Martin Gerhardt
and Heike Schuster:

cells may have states of 0 (healthy), 1 to 255 (infected) and 256 (ill).

A cell of state 0 (healthy) will get the state [K/k1] + [I/k2] in the next generation.
K=sum of ill neighbors, I=sum of infected neighbors,
k1 = illness threshold (1-5), k2 = infect threshold,
the square brackets rounding off to integer.

Infected cells (state 1-255) go to [S/A] + g, but max 256 in the next generation.
S = sum of the values from all neighbors and the cell itself. A is the number of these cells.
[S/A] is just the mean value.
g = constant (1-120) allways added, it is a kind of stimulation.

An ill cell (state 256) will be healthy (state 0) in the new generation.

This automaton is neighborhood with r=3.

This process may be described in this words:
- healthy cells will be infected by infected and ill neighbors.
- infected cells are powered by a mechanism of stimulation and diffusion until the cell is ill.
- "ill" cells will be healthy immediately and the process starts again.

There are generated a lot of pattern, depending of the parameter k1, k2, and g, but of the
starting states also.
Below you see 2 typical examples:

k1=1, k2=2, g=2 k1=1, k2=2, g=30

block cell automaton

In this type of cellular automaton are forming a constant amount of cells one block. A
transformation rule decides, which states the associated cells take in the next generation. In
the following generation the blocks are formed otherwise.

The type "block CA" in GeZA takes 2 cells for one block, in the next generation these blocks
are shifted by one cell (see image below).

The mode "Margolus" in GeZA-2D is a block cell automaton also!

For more informations click the Wikipedia article block cell automaton:

Options

Totalistic

This dialog is for defining your own Automaton.
Code needs is a String of digits and special characters (+-=!?) This is the rule for transition to
the next generation of a cell. More details you find in the manual in chapter 'fundamentals
totalistic'!
'max. value of random' defines the largest random number for generating a randomized initial
state. For question marks in the rule it's the largest random number too.

'totalistic' means that the states/values of the neighbour cells will be summed up. This sum is
relevant for the transition rule.
The 5 button after neighbours defines the neighbourhood: Green is neighbour, grey is not. '0'
is the cell itself.
For exploring the new Automaton touch button 'use this'.

Wolfram

Here you'll define the number of the Wolfram automaton.
You may set one of three Memory-Types also.
For more information see the manual chapter 'fundamentals Wolfram'.

Activating the 'alternating rules' checkbox, the input of a second wolfram code appears:
The automaton will use now the both rules alternatingly, the selected memory mode is used
allways

For exploring the new Automaton touch button 'use this'.For more information see the manual
chapter 'fundamentals Wolfram'.

NaSch-Model

Here you can change the 2 parameters 'car density' and 'dawdle factor'.
Both may get a value from 0 up to 100.
More information you'll find in the manual chapter 'fundamentals NaSch model'.

For exploring the new automaton touch button 'use this'.

TwoSteps

"TwoSteps" works quite similar the "totalistic" type. But here you may define own rules for odd
and even generations.
This dialog is for defining your own Automaton.
 "rule"is a String of digits and special characters (+-=!?). This is the rule for transition to the next
generation of a cell. More details you'll find in the manual in chapter 'fundamentals totalistic'!

'totalistic' means that the states/values of the neighbour cells will be summed up. This sum is
relevant for the transition rule.
The 5 button after neighbours defines the neighbourhood: Green is neighbour, grey is not. '0' is
the cell itself.
For exploring the new Automaton touch button 'use this'.

Zhabotinsky

"increment" is the constant (g) which is added to infected cells in every generation.
"infect threshold" is the minimum of infected neighbors to infect a cell.
"illness threshold" is the minimum of ill neighbors to infect a cell.

The value of "increment" is between 1 and 120..
Values of "infect threshold" and "illness threshold" are between 1 and 5.

Block CA

Here you may define the rules for the Margolus automaton.
In this type a block of 2 cells (for each cell are 4 states possible), will be taken and the rules sets
the states of this cells in the next generation.
One block may have 16 different states. In this window you'll see the current rule for these 16
states.

Touching one of this assignments opens this new window.

Choose here the new state for the selected block and you go back.

Credits

GeZA - App for Android

created 2016/19 by G. Brinkmann

Webside: www.zellauto.de

E-Mail: geza2d@zellauto.de

Acknowledgements:

Without support, understanding, pushing by my wife Brigitte,
GeZA was not thinkable.

IHDL

Thanx to the great Wikipedia project!

Literature:

Gerd Brinkmann
Das Software-Experiment
PC Schneider International 2/1987 S.108ff.

Martin Gerhard/Heike Schuster
Das digitale Universum
Vieweg 1995

Stephen Wolfram
A New Kind of Science
Wolfram Media 2002

Jörg R. Weimar
Simulation with Cellular Automata
Logos Verlag 1997/2003
http://www.jweimar.de/ZAscriptmml/gliederung.html

Daniel Scholz
Pixelspiele
Springer Spektrum 2014

Links

www.cell-auto.com

www.mirekw.com

www.fourmilab.ch/cellab

